Module title	Bioanalytics in a Regulated Environment					
Code	BP7					
Degree Program	Master of Science in Life Sciences					
Group	Bio / Pharma					
Workload	3 ECTS (90 student working hours: 42 lessons contact; 58 h self-study)					
Module	Name: Franka Kalman					
Coordinator	Phone: +41 (0)79 528 25 29					
	Email: franka.kalman@hevs.ch					
	Address: HESSO, Valais-Wallis, Sion					
Lecturers	Franka Kalman, HES-SO/VS					
	Oliver Germershaus, FHNW					
	Sabina Gerber, ZHAW					
	Guest Speakers from Industry (currently Lonza Visp)					
Entry requirements	Knows the different physico-chemical principles of liquid chromatography and					
	electrophoresis (including capillary electrophoresis) – see Bibliography					
	Knows the principles of spectroscopy & refractive index, fluorescence, mass					
	spectroscopy – see Bibliography					
	Knows the general chemical structure, 3D-structure and properties (e.g. pKa, pl,					
	absorption, fluorescence, molecular weight) of biomolecules (peptides, proteins,					
	glycoproteins, monoclonal antibodies, antibody-drug conjugates, complex					
	carbohydrates (N-glycans) and nucleic acids) – see Bibliography					
Learning outcomes	After completing the module, students will be able to:					
and competences	Know and understand the instrumental (bio)analytical techniques mostly used in					
	current routine (bio)pharmaceutical industry					
	Knows important quality attributes of (bio)pharmaceuticals & biosimilars, in					
	particular antibodies					
	Understand the relevance of particles and particle characterization in biological					
	drug products					
	Identify common challenges related to particles and particle formation in biologics					
	including strategies to circumvent such problems					
	Describe the basic stability challenges of biologic drugs, especially physical					
	instabilities					
	Be able to plan an efficient testing monograph for a biopharmaceutical e.g.					
	bioanalytical techniques for the characterization of APIs in the modern					
	(bio)pharmaceutical industry					
	Understand the difference of a "test" method in relation to an analytical method /					
	technique					
	Knows specific modern analytical techniques for complex N-glycan analysis, sub-					
	visible particles, AA composition, posttranslational modifications, different					
	digestion strategies for protein APIs, modern aggregation analysis					
	Knows the basic health authority rules for medicinal products in the regulated					
	pharmaceutical environment					

19.04.2024 -1/3-

	Understands the basic GMP (Good Manufacturing Praxis) requirements depending on the drug development phase								
	Knows the structure of and how to design an analytical SOP and the SST (System								
	Suitability Test) concept								
	Knows different ICH gu	ideline	s: valida	ation of	analyt	ical me	thods a	and spec	cification,
	stability testing								
Module contents	Concept of specification (ICH guideline), User Requirement Specification (URS) =								
	Analytical Target Profile (ATP) and basics of statistical process control (SPC)								
	Concept of a test method including structure and criteria of a typical system								
	suitability test (SST), the different development phases of a test method (URS /								
	ATP, feasibility studies, method development inclusive SOP & SST, Validation, QC release, technical method transfer)								
	A typical testing monograph for a MAB API / drug product in Pharma QC release								
	analytics								
	A typical monograph for a MAB drug put on batch stability testing								
	Particle formation and particle characterization in biological drug products								
	Typical modern release analytical techniques for content, identity, impurity								
	(product related, process related) e.g. aggregate analysis, N-glycan analysis,								
	posttranslational modi		_						
	Most important interactions				_	•	_		•
	Most important Guidel Specification, Furgineer							lesting	&
Teaching / learning	Specification, European & US Pharmacopeia & Swissmedic								
methods	LecturesCase studies								
	 Group work and preser 	ntation							
Assessment of	Written final Exam (80%)								
learning outcome	Presentation of case study(s) prepared by group work (20%)								
Format	Winter school CW6								
Timing of the	Block week: structure see following table (Contact teaching: 42 lessons / self-study:								
module	58h)								
							T _	T _	1
	Day of the block week	<1	1	2	3	4	5	>5	
	Contact teaching (lessons)		7	9	9	9	8		
	Self-study (hours)	40						18	
Venue	School of Life Sciences – FF		ofackei	strasse	30 41	 32 Mut	tenz	10	
Bibliography	Entry level:	,	Oracico	3010330	30, 11	32 IVIG	CIIZ		
	• Entry requirements (m	naterial	s for re	freshm	ent, kn	owledg	e is ass	umed a	nd a
	prerequisite to follow the course):								
	D.C. Harris "Quantitative Chemical Analysis" 8 th edition								
	Chapter 3 (Experiment		•						
	Chapter 5 (Quality Assurance and Calibration Methods)								

19.04.2024 -2/3-

	Chapter 22 (Introduction to Analytical Separations)
	Chapter 24 (High-Performance Liquid Chromatography)
	Chapter 25 (Chromatographic Methods and Capillary Electrophoresis)
	Entry requirements (materials for refreshment, knowledge is assumed and a
	prerequisite to follow the course): F. Lottspeich "Bioanalytics"
	Chapter 1 (Protein Purification)
	Chapter 2 (Protein determination)
	Chapter 5 (Immunological Techniques)
	Chapter 6 (Chemical Modification of Proteins and Protein Complexes) – for
	information
	Chapter 11 (Electrophoretic Techniques)
	Questions with respect to the entry requirements will be a substantial part of the final
	exam!
	Course material:
	ICH guideline (Method Validation, Stability Testing, Specification)
	European Pharmacopoeia (Ph. Eur.) 10th edition
	English
Links to other	Strong links to central modules Regulatory Affairs (pharma part) (BP6) and
modules	Pharmaceutical Sciences Technology (S23)
Comments	
Last Update	08.03.2024

19.04.2024 -3/3-